VAPOREQUILIBRIUMFOR AHELIUM FILM(MKS)

Start with the saturated vapor pressure of liquid helium, reduce it to an unsaturated vapor within the van der Waalsspotential at a height \(h \), then find the film thickness in a box with a fixed number of atoms.

Saturated vapor pressure from a fit to table...

\[P_s(T) := \exp\left[\frac{4.24846}{1 + \frac{.524764}{T}} + 11.8971 - 7.80921\left(\frac{1}{T} + .524764\right)\right] \text{ (Kelvin, Pascals)} \]

Pressure in equilibrium with a film, thickness \(h \) is reduced by the Boltzmann factor...

\[P(T, h) := P_s(T) \cdot \exp\left[\frac{T_v}{T} \left(\frac{h_1}{h}\right)^3 \left(\frac{1}{1 + \frac{h}{h_r}}\right)\right] \]

This relates the three quantities, \(P \), \(T \), and \(h \), so any two determine the third. The area and volume of the container determine where the helium is at any temperature. Ideal gas behavior is assumed in the vapor.

Area \(A := 10 \) Volume \(V := 10 \cdot 10^{-6} \) \(T = 0 \) thickness \(h_0 := 2.5 \cdot 10^{-9} \)

constant number of particles \[\frac{P(T, h) \cdot V}{k \cdot T} + \frac{h \cdot A}{h_1^3} = \frac{h_0 \cdot A}{h_1^3} \]

This can be solved numerically for the thickness to show how the film evaporates as temperature is raised...

\[x := 0.9 \cdot \frac{h_0}{h_1} \quad \text{vok} := \frac{V \cdot h_1^3}{k \cdot h_0 \cdot A} \quad H(T) := h_0 \cdot \text{root}\left\{\frac{P(T, x \cdot h_0)}{T} \cdot \text{vok} + x - 1, x\right\} \]

\(T := 0.30, 0.35, 1.7 \)
Note that, for our third sound chamber containing a surface reservoir, the evaporative thinning turns on well above 0.5 K.