Journal of Low Temperature Physics, Vol. 134, Nos. 1/2, January 2004 (© 2004)

Chaotic Third Sound Resonances

F. M. Ellis

Department of Physics, Wesleyan University, Middletown, CT 06459, USA

There are three independent phenomena that compete to determine the line
shapes of third sound resonances in a circular cavity. First, anharmonic
terms in the hydrodynamic equations of motion lead to the usual hysteresis on
a multi-valued response function. Second, wave coupling to vortices pinned
in the film modify the resonant frequency as changes in the persistent current
are induced. Finally, nonlinear dissipation can lead to saturation. The first
two of these have been observed to result in continuous (not just transient)
temporal behavior of the resonance amplitude with a fixed drive. Both cyclical
and chaotic behaviors have been observed. The effects are dependent on the
ability of the driven wave to either accelerate or decelerate the persistent
current onto different amplitude branches of the multi-valued resonance.

PACS numbers: 67.40 Hf, 67.40 Vs.

1. INTRODUCTION

Third sound in superfiuid He films is remarkable for extremely large
lateral film flow achievable as part of its oscillatory motion. The microscopic
size of a typical film thickness (on the order of nanometers) combined with
the macroscopic wavelength of the typical experimental geometry (on the
order of centimeters) leads to lateral oscillations in the film that are larger
than the thickness oscillations by the ratio of these two size scales: typically
on the order of 107. That the film flows with little dissipation under such
circumstances is a classic illustration of super-flow.

The extreme flow does not occur without consequence. Several nonlin-
ear phenomena are associated with third sound'™ and this paper reports on
observations of third sound resonances which, although driven with a steady
oscillatory force, respond in an unstable, possibly chaotic manner.
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Fig. 1. Third sound resonance scanned first up then down. The mode cou-
pling shift dominates at low amplitude (below point B) and the circulation
shift takes over at higher amplitudes (above point B). The dashed line shows
what the linear response would be in the absence of any shifts. The down
scan, taken after the up scan, resulted in a permanent shift of the resonance
location down by 0.72 Hz.

The nonlinear effects that come into play are best illustrated by the
features of the scanned third sound resonance shown in Fig. 1. The res-
onator used is circular, 12.3 mm in diameter, with the modes driven and
detected electrostatically. This allows for an unambiguous calibration of
amplitude, which henceforth will be referred to as “peak wave flow”. This
is the magnitude of largest oscillatory flow occurring within the resonator.
For the m = 2 mode used, v, = 0.360c3}, where c3 is the speed of third
sound (21 m/s throughout this paper), 7 is the height displacement of the
m = 2 Bessel function describing the mode, and h is the film thickness. The
numerical factor of 0.360 comes from the point of maximum flow, occurring
at approximately 3/4 of the resonator’s radius. Note that the peak flow of
around 1 m/s is quite extraordinary given the 2.6 nm film thickness.

The normally degenerate circular modes are split by any D.C. circu-
lation in the resonator.? The resonance shown in Fig. 1 was begun in the
presence of a significant circulation of about 17 cm/s, and is Doppler shifted
up from the degenerate position by about 16 Hz. The rotating wave of
this up-shifted mode travels in the direction of the circulating flow. The
frequency axis Fig. 1 is set to zero at this point.

The dashed line represents the expected line-shape in the absence of
nonlinear effects. As the resonance is approached from either direction,
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resulting in a significant amplitude, the first noticeable deviation from the
linear response is a reversible shift to lower frequencies. This shift is initially
proportional to the square of the amplitude and is primarily due to inter-
mode coupling mediated by the Bernoulli pressure.® This effect skews the
linear response curve dramatically to the left, forming two possible steady
state conditions for frequencies to the left of point A. In the vicinity of
this point, the up-scan jumps from the below-resonance branch up to the
above-resonance branch of the skewed response. High amplitudes of the
on-resonant condition are bypassed by this jump.

As the drive frequency is scanned down, the response again reaches the
vicinity of point A on the above-resonance branch, and continues past. At
approximately v, = 0.9 m/s, the oscillatory wave flow is enough to de-pin the
vortices responsible for the circulation.* A decay in the circulation is induced.
The line-shape is drawn out even further, this time by an irreversible shift
down in the frequency, following the direction of the scan, and reflecting the
induced decay. When point C is reached, the wave flow amplitude has grown
large enough to induce a forward circulation, or “swirl” the film up, through
vortex creation and redistribution. The subsequent Doppler induced mode
up-shift rapidly moves the wave conditions through resonance in a runaway
fashion, catastrophically jumping back to the tail of the below-resonance
branch. Although the Doppler shift decayed approximately 2 Hz during
the down scan, the net effect of the violent self-scan through resonance was
to send the circulation (and resonance) back up. After the scan sequence
shown in Fig. 1, the low amplitude resonance point ended up at 0.72 Hz
below where it began.

If the circulation were not changed, the up and down scans would follow
a repeatable path along he above- and below- resonance branches of the
response distorted by the coupling shift. These down-shifted branches allow
a hysteresis in the up and down scans, that are similar, but opposite in
sign to those on a driven whirling string.® The possibility of circulation
changes complicates the behavior, as discussed. Depending on the exact
drive conditions and the temperature, the amplitude along either of the
branches could swirl up the circulation or induce it to decay. The up scan
of Fig. 1 did neither: conditions were specifically chosen so that it could
be scanned first, leaving the resonance alone. Both the up and down scans
shared part of the same above-resonant response.

2. OBSERVATIONS AND DISCUSSION

The above effects allow for an interesting phenomenon: with a fixed
drive, it is possible to begin initially below resonance, but at an amplitude
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Fig. 2. Cyclically astable third sound resonance at 0.6 K with a 24 V drive
(A) and 28.5 V drive (B). With a fixed drive frequency, the third sound
amplitude cycles between the below-, and above-resonant branches of the
hysteresis in Fig. 1.

large enough to induce decay through vortex de-pinning. The diminishing
circulation will shift the mode into resonance, jumping to the above-resonant
branch. On this branch, the amplitude is larger, and capable of swirling the
circulation, sending the mode back up. The mode drops back down to the
below resonant branch, and the cycle repeats. This behavior is demonstrated
by the data in Fig. 2. Many thousands of oscillatory cycles occur over the
course of the resulting cyclical amplitude modulations, shown at two different
drive levels.

These cyclical modulations are somewhat delicate and require condi-
tions with a scope that is not yet surveyed. The behavior reported here
was observed in the m = 2, n = 1 mode at 0.6 K where the right combi-
nation mode coupling shift, circulation shift, and hysteresis coincide with a
favorable thermally enhanced induced decay rate. The range of stable cycli-
cal behavior with drive is typically small, stable only for drive frequencies
within a 0.1% range. Near the boundary of these conditions the cyclical be-
havior can degenerate into a chaotic-like modulation. An example is shown
in Fig. 3, taken at 0.5 K with a 30 V drive.

It is difficult to prove that an observed phenomenon is chaotic, particu-
larly when dynamical noise is present and the data set is temporally limited.
Further investigation of the qualitative aspects of the resonances show that
chaos is plausible. Fig. 4 shows the cyclical magnitude behavior previously
shown in Fig. 2 as complex amplitude plots. In (A), the complex amplitude,
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Fig. 3. Chaotically astable resonance at 0.5 K and 30 V fixed drive. Cycling
around the resonance hysteresis results in sections of transient decay beats,
one of which is highlighted.

referenced to the fixed drive, cycles counter-clockwise in time around the
graphs indicating the wave oscillations are slightly higher than the drive.
This corresponds to a drive on the the below-resonant branch of the scanned
case. The wave is inducing the circulation to decay into resonance. The am-
plitude builds up when the phase (relative to the drive force) gets close to
—90°. The “retro” motion is the jump to the above-resonant branch (wave
oscillations below the drive) where the circulation, and resonant frequency
increase, returning to the below-resonant branch. It should be mentioned
that this cyclical behavior is far from the steady state condition assumed in
a scan such as in Fig. 1. The phase advance of one cycle demonstrates that
these trajectories are dominated by transient oscillations. References to the
steady state response can only be qualitative.

In Fig. 4 (B), the wave advances two cycles relative to the drive before
hopping to the above-resonant branch. Although the trajectory seems to
retrace itself after one cycle, the circulation (which is obtained from the
trajectory rate) is different on alternate passages.

These graphs indicate the possible basis for a chaotic modulation of the
response. There are two dynamical variables in effect: the (complex) am-
plitude, and the circulation. The jump point to the above-resonant branch
appears to be associated with hyperbolic point® in the phase space of these
two variables. The amplitude of the chaotic example (Fig. 3) shows occur-
rences of one, two, and more transient decay “beats” terminating with close
encounters to the hyperbolic point. One such section of about two beats is



102 F. M. Ellis

1.0 T T T 1.0
(A) (B) o
00 2, Su e " .
0.5} M S 0.5 A e
0o d® *s h‘bg‘ AN
0 D wl@ S s
= o L1 E Ss L
= 0 “$ {0 - £ 4
\>/ c:“ < 3/ & -':o ?_
£ % < E o :
Teds é ¢ orap ?
-0.57 “%iten P -0.5¢ - ”} R
N, i“:‘? . B 0 e, - 4’_;":.,“
S R e ot e
1.0 : ‘ 1.0 :
-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0
Re(v) (m/s) Re(v) (m/s)

Fig. 4. Real and imaginary parts of the cyclical behavior of Fig. 2. The
wave cycles CCW around the plots, gaining one cycle of oscillation relative
to the drive for each round trip.

highlighted near the middle of Fig. 3.

3. CONCLUSIONS

Third sound resonances have been observed to display highly nonlinear
behavior involving line-shape distortions due to mode coupling and swirling.
The mode coupling shifts provide a hysteresis to the line-shape, and the
vortex de-pinning and nucleation induce circulation changes that can shift
the resonance either way. The precise conditions under which these effects
allow for cyclical, quasi-periodic, or possibly chaotic amplitude modulation
are yet to be determined, but the mechanism responsible for the instability
has been identified. Numerical simulations of the mechanism are presently
being investigated.
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