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Abstract. The hydrodynamics of third sound in superfluid 4He films passes through a regime
dominated by surface excitations as the temperature is lowered. With a limited spatial extent,
such excitations decouple from the thermomechanical forces operating within the context of the
two-fluid model. This phenomenon is the basis of the “partial entropy” of Bergman’s classic
development of third sound hydrodynamics [1], but its distinction from entropy has been lost
by subsequent authors. We present a computational example of its hydrodynamic significance
and discuss the consequences for the thermomechanical aspects of third sound.

1. Introduction
Third Sound is an acoustic mode within two fluid hydrodynamics where the motion is dominated
by the flow of the superfluid component along the substrate of an adsorbed film. The intimate
contact with the substrate locks the normal component to vn = 0, and the free surface relieves the
pressure of compression. Like second sound, third sound has a mechanical component (kinetic
energy and van der Waals potential energy) as well as a thermal component associated with
the concentration and dilution of thermal excitations. Both sounds exhibit propagating thermal
fluctuations, but the nature of the thermal excitations [2][3] and constraint on their mechanical
coupling give the thermomechanical effects within the film some unexpected behavior.

We begin by describing the hydrodynamic equations of motion for third sound and
illuminating the subtlety of Bergman’s “partial entropy” [1]. We then present results of a
numerical computation of the partial entropy for a simplified set of excitations [2] for the purposes
of illustrating its distinction from a generic “film entropy” which pervaded the subsequent third
sound literature [4]. Variational approaches to third sound [5][6] correctly include the physics,
but as the understanding of film excitations improves [3], we re-emphasize the hydrodynamic
consequence of partial entropy in the context of the two fluid model.

2. Third sound equations of motion
The thorough development by Bergman remains the basis used by those with experimental access
to the hydrodynamic variables of the two-fluid model. Our emphasis here is on the concept of
partial entropy, and as a consequence, we express his equations in a form that more intuitively
separates the various terms according to their function. We also work in one dimension with all
variables appropriately film-averaged. We take vn = 0, with η, τ , and v the oscillating thickness,
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temperature, and superflow, respectively :

ρ
∂η

∂t
= −ρsh

∂v

∂x
+ Jm (1)

ρhC
∂τ

∂t
= ρshT S̄

∂v

∂x
− LJm − JQ (2)

∂v

∂t
= −g∂h

∂x
+ S̄∇τ (3)

The first expresses conservation of mass in the incompressible of film thickness h including
superflow, ρsv, and a mass flux from the film into the vapor, Jm. Equation (2) expresses
conservation of thermal energy derived from the consideration of entropy. Without any normal
component motion, entropy can be diluted by superflow, or otherwise changed by heat flux
through evaporative latent heat, LJm, and conduction, JQ. The last equation expresses
conservation of mechanical energy in the form of Newton’s law. The van der Waals acceleration
at the film surface is g, and the thermomechanical force involves the thermal gradient.

Bergman’s inclusion of L distributed among several terms is not very transparent. It results
from a careful derivation from the two fluid model including motion of the normal component.
Once this connection is lost with the vn = 0 approximation, it is more transparent to put the
L into the single evaporative term in equation (2). The partial entropy per mass denoted
by S̄ in both equations, comes about through consideration of a fixed areal patch looking
down perpendicularly upon the film. In equation (2), for example, the total entropy per area,
assumed to be a state variable dependent only on thickness and temperature, Σ(h, T ), has two
corresponding partial derivatives responsible for the film thermodynamics functions arising from
its derivative: (

∂Σ
∂T

)
h

=
ρhC

T
,

(
∂Σ
∂h

)
T

= ρS̄ (4)

Here, C is the film heat capacity per mass, but S̄, rather than “film averaged entropy”, is a
new quantity combining all the effects of a changing film thickness into the dilution of entropy.
A similar consideration produces the partial entropy in equation (3). In terms of the more
intuitive film entropy per mass, S, the partial entropy is

S̄ =
∂(hS)
∂h

. (5)

This form for the entropy is explicitly pointed out as separate from the other film averaged
quantities in Bergman’s derivation, but seems not to have been properly passed on by subsequent
authors. At low temperatures, the difference between the film entropy and the partial entropy
can be significant. The differences result from the nature of the thermal excitations that
dominate the normal fluid component, and depend strongly on both thickness and temperature.
We compute these differences for our model system in the next section.

The solutions to the equations of motion are rather involved with the detailed substrate and
vapor interactions included for the geometry of interest. For the purposes of illustrating how the
partial entropy comes in, it suffices to say that thermomechanical terms appear in two primary
forms associated with the adiabatic limit. First, the temperature oscillations in the adiabatic
film, given by τ

T = − S̄
C
η
h , and second, the magnitude of the thermomechanical restoring force

expressed as c2
h = ρs

ρ
T S̄2

C . The latter is the fifth sound speed [4] [7] with the partial entropy
substituted. The influence of each of these terms is reduced (and phase shifted) as a result of
vapor and substrate coupling as the temperature rises, but the presence of the partial entropy
remains linked to these terms.
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3. Film thermodynamics
To illustrate the distinction of partial entropy from film entropy, we use a simplified excitation
spectrum ω(q) valid for films not too thin (h >1 nm) and not too hot (T <0.75 K) that includes :
(1)The surface wave mode (third sound/ripplon spectrum) with ω2

surf = tanh(qh)
(
gq + γq3

ρ

)
;

(2)bulk-like film phonon branches with ω2
n = c2

1

((
(n−1/2)π

h

)2
+ q2

)
; and (3)bulk rotons for

the purposes of connecting to the high temperature, thick film limit. Layer modes [3] have
not been included for simplicity, but would be important in thinner films. The three spectra
were integrated numerically with the Planck distribution to obtain the thermodynamic functions
for the film specific entropy S(T ) and specific heat C(T ). The partial entropy was evaluated
using equation (5). A sufficient number of phonon modes were included to assure quantitative
accuracy for T < 0.75 K. Figure (1) and figure (2) show the effect of the partial entropy for a
range of film thickness expressed in terms of quantities relevant to the third sound equations of
motion.

Figure 1. Ratio of the partial entropy
to the specific heat giving the adiabatic
temperature oscillations for third sound.

Figure 2. Ratio squared of the partial
entropy to the film entropy representing
the effect on the thermomechanical force.

4. Discussion
The partial entropy emerges from the two fluid model applied to films due to a unique
combination of the mechanical constraint imposed by the free surface and the thickness
dependence of the excitations themselves. As the volume available to excitations expands or
contracts with the movement of the free surface, the nature of the excitations involved dictates
the character of thermal response. Three idealized cases can help clarify this concept, again
taken in the adiabatic sound limit and with the simplified excitation spectrum to emphasize
the role of the partial entropy. Consider first the case where the film is taken as a slab of bulk
as would be expected for thick films at high temperatures. Since the entropy per area grows
proportional to thickness, the partial entropy per mass from equation (5) is just the bulk entropy
per mass, S̄ = Sbulk. As mass and heat move around in the film, the intensive quality of the
thermal excitations as the normal component dominates. This is perhaps the historic reference
frame that allowed film entropy to displace partial entropy in the literature.

Next, consider low temperatures where the very long-wave free-surface excitations are
populated. This is the third sound limit where capillarity is negligible compared to the van
der Waals force. With ω =

√
g(h)hq, the thermodynamics can be analytically determined. The

partial entropy with g(h) ∝ h−4 is S̄ = 3S. This limit has a partial entropy significantly
greater than the film entropy. Converging superfluid at a wave crest not only dilutes the
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normal component, but softens the excitation spectrum as the film thickens. The partial entropy
expresses this constraint analogous to adiabatic demagnetization.

Finally, consider the case where all of the thermal energy is associated with surface excitations
having no connection to the thickness. This would be the case of moderate temperature and
thickness dominated by high-q ripplons. Here, the entropy per area is independent of h and the
partial entropy, from equation (5), is S̄ = 0. This would also apply to the layer modes.

All three cases are visible in the numeric data of figures (1) and (2). At low temperature, all
thicknesses approach the S̄ = 3S, third sound limit. At high temperatures, the dominance of
the phonon branches and rotons give the entropy a bulk-like thickness dependence, approaching
S̄ = S. Most interesting is the intermediate range where the surface ripplons dominate. This
begins around 0.5 K and extends down to where the ripplons begin to sense the substrate – the
third sound modes – with thicker films approaching S̄ = 0 over a widening temperature range.

Surprisingly, the partial entropy for films with h > 6.1 nm has a negative partial entropy.
Figure (3) maps this range of thickness and temperature for our simplified excitation spectrum.
Ripplons with qh <∼ 1 and γq3

ρ >∼ gq have thickness dependence favorable for the mode

softening. These conditions, with T = h̄ω(q)
k are shown in figure (3) as the shaded region. Note

that here, both the thermomechanical force and the temperature oscillations in third sound
would be reversed.

Figure 3. The region within the
solid arc shows the range of neg-
ative partial entropy predicted by
the simplified excitation spectrum.
The shaded region is described in
the text.

5. Conclusion
A proper treatment of partial entropy within two-fluid third sound hydrodynamics significantly
alters the magnitude of thermal effects where surface excitations dominate the population of
thermal excitations. The distinction between film entropy and the original partial entropy
of Bergman must be recognized. The partial entropy is smaller than the film entropy for
intermediate thicknesses and temperatures, and larger than the film entropy for all thicknesses
at very low temperatures. These conclusions are based on the qualitative character of the
excitations and are not limited to our simplified spectrum.

The region of negative partial entropy at intermediate thickness and temperature is, however,
susceptible to the details of the excitation spectrum. Its occurrence in the the simple film-ripplon
spectrum illustrates how the reversal of thermomechanical attributes of the two-fluid model could
occur in films. In spite of the reversal, the sign of the modified fifth sound speed remains positive
under all conditions.

References
[1] Bergman D 1969 Phys. Rev. 188 370
[2] Saam W F and Cole M W 1975 Phys. Rev. B 11 1086
[3] C E Campbell B E Clements E K and Saarela M Phys. Rev. B 55 3769
[4] Putterman S 1974 Superfluid Hydrodynamics (North-Holland)
[5] J E Rutledge W L M and Mochel J M Phys. Rev. B 18 2155
[6] Krotscheck E and Miller M D Phys. Rev. B 73 134514
[7] I Rudnick J Maynard G W and Putterman S 1979 Phys. Rev. B 20 1934

25th International Conference on Low Temperature Physics (LT25) IOP Publishing
Journal of Physics: Conference Series 150 (2009) 032085 doi:10.1088/1742-6596/150/3/032085

4




