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Heat transport in active harmonic chains
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We show that a harmonic lattice model with amplifying and attenuating elements, when coupled to two thermal
baths, exhibits unique heat transport properties. Some of these novel features include anomalous nonequilibrium
steady-state heat currents, negative differential thermal conductance, as well as nonreciprocal heat transport.
We find that when these elements are arranged in a PT -symmetric manner, the domain of existence of the
nonequilibrium steady state is maximized. We propose an electronic experimental setup based on resistive-
inductive-capacitive (RLC) transmission lines, where our predictions can be tested.
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I. INTRODUCTION

The study of heat transport and the investigation of new
schemes for its control are some of the main challenges of sta-
tistical physics and thermal engineering. From the fundamental
point of view, the challenge is to understand macroscopic phe-
nomena and their statistical properties in terms of deterministic
microscopic dynamics and in particular to connect macro-
scopic irreversibility with time-reversible microscopic evolu-
tion of a system of interacting particles. On the technological
side, on the other hand, there is a lot of pressure to engineer
high-efficiency thermoelectric materials and design efficient
schemes for the control of heat transport. As a result, the study
of heat transport in low-dimensional systems such as atom
chains or various nanostructures has produced many exciting
ideas [1–3], ranging from heat rectification [4] to heat logic
gates [5]. In fact, some of these exciting theoretical suggestions
recently have been experimentally realized [6]. Despite all
this activity, our understanding of heat transport is far from
being settled. For example, it is still not understood exactly
what are the sufficient and necessary conditions in terms of
microscopic dynamics for the validity of Fourier’s law of heat
conduction [7]. Even in linear (harmonic) oscillator chains,
energy transport can have various features, depending on the
(mass) disorder or spectral properties of the heat baths [3].

Until now, all the theoretical studies of energy transport
on the nanoscale level have been conducted on passive
(conservative) systems, that is, systems without any active
elements which would amplify or dissipate local energy from
or to some external degrees of freedom. However, dissipation
mechanisms are inevitable in practical applications and thus
one of the key challenges encountered in thermal engineering
is their presence, which typically degrades the efficiency of
thermal devices. As a result, considerable research effort
is invested in eliminating and mitigating these undesirable
absorption mechanisms. Below, we adopt the opposite view-
point: by manipulating absorption and via a judicious design
that involves the combination of amplification and absorption

regions, we achieve schemes of thermal conduction with
intriguing properties similar to thermal rectification and heat
switching. Our study is inspired by recent achievements in the
field of optics, where it has been discovered [8] that a new
class of synthetic materials (the so-called PT metamaterials)
created by a delicately balanced arrangement of amplification
and absorption regions can exhibit novel properties [8–10].
At the heart of these innovative ideas is the observation that
non-Hermitian Hamiltonians, which respect the combined
parity (P) and time (T ) reversal symmetry, can have real
spectrum and thus generate a (pseudo)unitary time evolution
[11–13].

In this paper, we present a theoretical study of heat transport
through an active harmonic chain coupled at the left and right
edges to a pair of Langevin heat reservoirs with temperatures
TL and TR respectively. For simplicity, we assume only
one amplifier and one attenuator, which are placed on the
left and right symmetrically with respect to the center of
the chain. We show that such structures exhibit intriguing
thermal transport characteristics. Associated separately with
the left and right baths are critical values of the amplification
and attenuation parameter, γ ∗

L and γ ∗
R , where the differential

conductance changes sign, passing through zero. At either of
these points, the heat flow into the bath is independent of its
own temperature and is proportional only to the temperature
of the other bath. Most remarkably, these critical values
occur before the system reaches an instability point γi . The
maximum size of the stability regime γ < γi occurs at the
exact balance of the gain and loss—the condition required
for the PT symmetric Hamiltonian of an isolated chain.
Finally, we propose an electronic experimental setup based on
resistive-inductive-capacitive (RLC) transmission lines, where
our predictions can be tested.

II. MODEL AND MATHEMATICAL FORMALISM

The mathematical model is schematically depicted in
Fig. 1(a). It consists of a chain of N = Na + 2Nb particles
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FIG. 1. (Color online) (a) Schematic illustration of an active
harmonic chain model: Na = 8 harmonic masses are coupled to two
other large sublattices, which are in turn coupled to Langevin baths.
(b) Electronic implementation of a simplified Na = 2 (dimer) chain.
The negative resistance gain element is provided by the operational
amplifier (op-amp) negative impedance converter shown in (c). The
voltage sources Vn and V ′

n are synthesized noise generators, which
along with the fixed r stand in for the thermal baths.

of equal mass m coupled by harmonic springs of constant k.
The first (last) Nb particles are coupled to a Langevin reservoir
of temperature TL (TR). We assume that the coupling constant
κ with the reservoirs is the same for all particles. We also
have two active oscillators, an amplifier (where the motion
is linearly amplified), and an attenuator (where it is linearly
damped) placed symmetrically with respect to the middle of
the chain, at positions nγ and n−γ respectively. An electronic
realization shown in Fig. 1(b) is discussed at the end of this
paper.

Using units in which m = k = 1, the corresponding
stochastic equations of motion are

dqn/dt = pn; n = 1, . . . ,N,

dpn/dt = qn+1 − 2qn + qn−1 +
∑

σ=±
σγ δn,nσγ

pn

+
∑

τ=L,R

(−κpn +
√

2κTτ ξn)θτ
n , (1)

with open boundaries (q0 ≡ qN+1 ≡ 0), θL
n = {1 if n �

Nb; 0 otherwise}, θR
n = {1 if n > Na + Nb; 0 otherwise},

ξn(t) being δ-correlated Gaussian stochastic variables with
〈ξn(t)ξn′(t ′)〉 = δn,n′δ(t − t ′) where the bracket represents a
noise average.

For κ = 0, the system of N coupled oscillators is isolated
from the reservoirs. In this case, the Hamiltonian associated
with Eqs. (1) is PT symmetric [11]. The normal modes
and eigenfrequencies can be calculated by performing the
substitution qα

n = An exp(λαt). In accordance to the standard
PT scenario [11,14], we find that the eigenfrequencies λα are
imaginary for an amplification and attenuation parameter γ

smaller than a critical value γPT . In this regime, the normal
modes are also eigenmodes of the PT operator. For γ > γPT ,
the eigenfrequencies of the system are complex, while the
normal modes are no longer eigenstates of the PT operator.

For κ �= 0, we use Ito calculus of stochastic differential
equations and derive the equation of motion for the covariances
C(t) = 〈�x(t) ⊗ �x(t)〉, where the vector �x is defined as �x =
(q1, . . . ,qN ,p1, . . . ,pN )T . We find [2,3]

dC/dt = ZC + CZT + Y, (2)

where Z and Y are 2N × 2N matrices

Z =
(

0 1
D 0

)
+

∑

σ=±
σγ PN+nσ

−
∑

τ=L,R

Yτ , (3)

Y =
∑

τ

Tτ Yτ , with Yτ = κ

N∑

n=1

θτ
n PN+n. (4)

Above, Pk = �ek ⊗ �ek are diagonal rank 1 projectors, �ek is a
basis vector with elements (�ek)n = δn,k , and D is an N × N ma-
trix with elements Dn,m = −2δn,m + δn,m+1 + δn,m−1 which
encodes all the physical information about the interactions
within the harmonic lattice.

III. THEORETICAL ANALYSIS

We are interested in the nonequilibrium steady state
(NESS), whose covariance matrix C∞ satisfies the Lyapunov
equation [2,3]

ZC∞ + C∞ZT = −Y. (5)

The existence and the stability of the NESS are determined
by the (complex) spectrum {λα,α = 1, . . . ,2N} of the real
nonsymmetric matrix Z,1 defining a biorthonormal set of right
�vα and left �v′

α eigenvectors,

Z�vα = λα �vα, ZT �v′
α = λα �v′

α, �vα · �v′
β = δα,β . (6)

In other words, NESS exists if all eigenvalues λα have
negative real part, Reλα < 0. Otherwise, if for some α,
Reλα > 0, the time-dependent covariances (2)—for a generic
initial condition—increase as exp(2tReλα), signaling an un-
controlled amplification of the system.

The transition to unstable behavior is determined by the
parameter γ . We define γi as the point for which the first
eigenvalue reaches the imaginary line Reλ1(γ = γi) = 0. In
Fig. 2(a), we show the parametric evolution of Reλα as a
function of γ for the PT configuration of Fig. 1. We note
that most of the eigenvalues are located inside a band and
remain unchanged as γ increases. Only a single pair of
eigenvalues λ1,2 is approaching and crossing the imaginary
line at γ = γi . This is remnant of the spontaneous PT -
symmetry-breaking scenario appearing in isolated systems.
In Figs. 2(b)–2(e), we further compare the behavior of λ1,2(γ )
for various coupling constants κ and degrees of asymmetry
between γL = γ and γR = −γ (1 − �). We find that the PT
configurations (corresponding to � = 0) result in the largest
value of γi ≈ γPT [see Fig. 2(b)]. A perturbative argument in
κ , whose validity was checked numerically, allows us to better
understand the behavior of Reλ1,2(γ ): For κ = 0, both λ1,2(γ )

1We order the eigenvalues with regard to the nonincreasing real part
Reλα � Reλβ for α < β. Moreover, since Z is real, the corresponding
eigenvalues come in complex conjugate pairs λ2k = λ∗

2k−1.
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FIG. 2. (Color online) The real (a) and the imaginary [inset of (a)]
part of the spectrum λ of the PT -symmetric harmonic chain of
Fig. 1(a) with Nb = 50 and κ = 0.1, vs the amplification and
attenuation parameter γ . The green triangles (red circles) correspond
to the leading eigenvalue, λ1 (λ2). (b)–(e) Parametric evolution of
Reλ1,2 for the chain of Fig. 1 with Nb = 1, various κ values, and
γL = γ , γR = −γ (1 − �). In case of � = 0 [i.e., PT -symmetric
structure shown in panel (b)], γi is almost insensitive to κ and very
close to γPT associated to κ = 0. As � increases [panels (c)–(e)], γi

tends to zero.

increase linearly as a function of γ (for small γ values), with a
slope S ∼ �. Increasing the coupling κ leads to a global shift
of the eigenvalues (by an amount κ) toward the negative-real
semiplane; that is, Reλ1,2(γ ) ∼ −κ + Sγ . Consequently, we
have that γi ≈ min{κ/S; γPT }.

Our formalism can be utilized to derive the properties of
NESS. For example, the energy current at site n is a linear
combination of covariance matrix elements; that is,

Jn = 〈pn(qn+1−qn−1)〉 = Cn+1,n+N −Cn−1,n+N . (7)

Furthermore, since the matrix Y on the right-hand side of
Eq. (5) is linear in the two bath temperatures Tτ , its solution—
the full covariance matrix—and hence all the currents are also
linear in Tτ , namely

C∞ = TLCL + TRCR, (8)

where Cτ solve the temperature-independent Lyapunov equa-
tions ZCτ + Cτ ZT = −Yτ . If JL and JR designate the energy
and heat currents in NESS to the left and right baths respec-
tively, that is, JL = J∞

n for Nb < n < nσγ and JR = J∞
n for

nσγ < n � Na + Nb (since J∞
n is site independent for passive

sites uncoupled from the baths due to energy conservation),
then we may write

Jτ = Kτ
LTL + Kτ

RTR, (9)

where Kτ
τ ′ ≡ ∂Jτ /∂Tτ ′ are temperature-independent coeffi-

cients obtained explicitly combining (8) and (9).
For γ = 0, clearly JL = −JR and KL

L > 0, KR
R < 0.

However, for an active system, a critical γ ∗
τ , 0 < γ ∗

τ < γi , may
exist for which one of the currents Jτ does not depend on the
corresponding temperature Tτ and thus the differential thermal
conductance vanishes Kτ

τ |γ=γ ∗
τ

= 0. This is nicely illustrated
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FIG. 3. (Color online) (a) Heat flux JL as a function of the
parameter γ for various TL temperatures and fixed TR = 10; (b) heat
flux JR for various TR temperatures and fixed TL = 10. In the inset,
we show a magnification of the area around γ ∗

R . The dashed blue lines
correspond to heat fluxes for the case where TL = TR . A nonreciprocal
behavior is obvious.

by our numerical data in Fig. 3. Moreover, as γ increases
above γ ∗

τ , the differential thermal conductance Kτ
τ changes

sign. Specifically, we found that KL
L (γ < γ ∗

L) > 0 [KR
R (γ <

γ ∗
R) < 0] while KL

L (γ > γ ∗
L) < 0 [KR

R (γ > γ ∗
R) > 0].

Thus, in the interval γ ∗
L < γ < γ ∗

R , both differential thermal
conductances KL

L,KR
R are negative. While for γ < γ ∗

τ the
heat flow is consistent with the standard expectations, the
opposite limit of γ > γ ∗

τ is counterintuitive. Specifically, we
find that JL < 0, indicating flux toward the left bath, even if
its temperature is higher than the one of the right bath, that
is, TL > TR [see Fig. 3(a)]. In fact, as TL becomes higher,
the magnitude of the heat flux |JL| becomes larger toward
the left bath. Indeed, an increase of TL results in stronger
amplification of the local energy of the site n+−, which
will act as an effective bath with temperature Tn+ = 〈p2

n+〉
higher than TL (see also the right panels of Fig. 4). A
similar argument can be used in order to understand the
anomalous heat transport for the right flux JR , that is, the
flux measured closer to the attenuating oscillator n−. In this
case, the role of the attenuator is to shift γ ∗

R to higher values
compared to γ ∗

L . This is illustrated in Fig. 3(b), where it
is shown that higher TR (>TL) values lead to larger heat
fluxes JR .

We can use a further analytical approximation to get a
general estimation of NESS in the vicinity δγ = γi − γ of
the instability point γi . We first note that the solution of the
Lyapunov equation can be written in terms of a linear problem
for the superoperator Ŝ acting on the matrix space of 2N × 2N

matrices X, as ŜX = ZX + XZT . Specifically, ŜC∞ = −Y or
C = −Ŝ−1Y = −∑

τ Tτ Ŝ−1Yτ . Next, we define the two sets
of matrices Vα,β = �vα ⊗ �vβ and V′

α,β = �v′
α ⊗ �v′

β , which are
biorthonormal with respect to a matrix dot product (A,B) =
trAT B, that is, (Vα′,β ′ ,Vα,β ) = δα,α′δβ,β ′ . The latter identity
can be easily derived with the help of Eq. (6). Using the
above relations, we find the spectral decomposition for the
superoperator Ŝ, which reads as ŜVα,β = (λα + λβ)Vα,β . This
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FIG. 4. (Color online) Flux and temperature profiles for two
different situations of a chain with Na = 8 and Nb = 50 sites. The
bath temperatures are TL = 10, TR = 1, while the coupling to the bath
is κ = 0.1: Left plots correspond to γ = 0.1, far away from the critical
value γi = 0.289, while the right plots are for γ = 0.286, much closer
to γi . The black curves correspond to the exact solution of Eq. (5),
while the red curves (triangles) are associated with the analytical
approximation Eq. (11). The blue (square) and green (right triangle)
curves are results of the molecular dynamics (MD) simulations for
various times. A nice convergence toward the theoretical predictions
can be seen already for times t = 100 for γ = 0.1 and t = 5 × 103

for γ = 0.286.

relation, together with the biorthonormality, allows us to derive
a Liouvillean decomposition of the covariances

Cτ = −
∑

α,β

�v′
α · Yτ �v′

β

λα + λβ

Vα,β . (10)

Equation (10) is a very useful approximation in the vicinity
of γi (i.e., for small δγ ), since then, in our case (see Fig. 2),
only a single pair of eigenvalues λ1,2 dominates. By writing
λ1,2 ≈ −ρ δγ ± i� where ρ = −∂Reλ1,2/∂γ |γi , we have

Cτ = (ρ δγ )−1(�v′
1 · Yτ �v′

2)(V1,2 + V2,1)/2 + O[(δγ )0]. (11)

Equation (11) together with Eq. (7) yields an approximate
expression of the current Jn near γi :

Jτ = (1/δγ )
(
Kτ

LTL + Kτ
RTR

) + O[(δγ )0], (12)

where Kτ
τ ′ are γ and temperature-independent coefficients.

The divergence Jτ ∼ 1/δγ is nicely seen in Fig. 3.
To further strengthen the validity of our approximations

for the covariant matrix Eq. (11), we have calculated the
temperature profile Tn ≡ 〈p2

n〉 = CN+n,N+n and the current
profile defined by Eq. (7). In Fig. 4, we compare the outcome
of Eq. (5) with the predictions of Eq. (11) and find an excellent
agreement as δγ → 0.

We have also tested the accuracy of our theoretical
calculations by comparing them with the outcomes of the
direct molecular dynamics (MD) simulations for the system of
Eqs. (1). In Fig. 4, we report the outcome of our simulations
for two different γ values. In order to check the convergence
of the MD simulations toward the theoretical results of Eq. (5),
we have compared the temperature profile Tn and the flux Jn

for two different times in each of the γ cases (the time t is
measured in units of inverse coupling). For γ values away
from the γi this convergence is achieved quickly, while in
the opposite case of γ → γi one needs to integrate Eq. (1)
for much longer times. The MD results are averaged over an
ensemble of 100 different bath configurations while the initial
conditions of the displacement and momenta of the oscillators
was in all cases taken to be (qn,pn) = (0,0). An additional
time average (over the last 20 time units) was performed in
order to average out the oscillations of the chain elements. A
convergence toward the theoretical results of Eq. (5) is evident.

IV. ELECTRONIC IMPLEMENTATION

We propose an RLC circuit [Figs. 1(b) and 1(c)] capable of
demonstrating the qualitative features of the active harmonic
lattice. The heat baths are implemented by synthesized
noise sources Vn and V ′

n having spectral density functions
S(ω) = 2

π
kBT r

√
1 − ω2LC/4, with a fixed series resistance

r = √
L/C and T being the respective bath temperature.

This spectral density along with the L/2 coupling into the
ends of the system closely matches the Langevin reservoir of
our lattice model. Moreover, the linear nature of the system
allows for a computational correction of both the spectral
function and impedance of the experimental bath to the infinite
chain equivalent. The active lattice chain has an electronic
equivalence to an RLC chain with the voltage on the capacitor
assuming the role of the particle displacement, C the mass,
and 1/L the coupling. Only the gain and loss elements are
included for simplicity, with the gain implemented by the
negative impedance converter shown in Fig. 1(c). The gain/loss
parameter is γ = R−1√L/C. The net power conducted out of
either bath can be obtained from the voltages sampled on
the respective source resistance. For example, if V (t) is the
voltage on the upper end of the left bath resistance r [see
Fig. 1(b)], the power conducted out of that bath is Wn =
〈V (t)(Vn(t) − V (t))〉/r . A negative power would indicate heat
flux into the bath.

V. CONCLUSIONS

We have demonstrated that heat transport in active harmonic
chains can exhibit unique characteristics. The NESS solution
was found and studied in detailed. For the case of PT -
symmetric arrangements of the active elements, the domain of
its existence (with respect to the amplification and attenuation
parameter) was maximal. We have found that the heat flux has
negative differential thermal conductance, it is independent of
the temperature of the bath that is on the other end of the chain,
and it shows a nonreciprocal behavior with respect to the two
baths.
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